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Spall fracture can occur in metallic specimens under explosive and impact loading. It 
can be diminished or prevented entirely by using spacers of porous materials since they pos- 
sess high energy absorption characteristics. 

On the basis of numerical methods of the mechanics of a continuous medium, the influence 
of porous spacers on the spall fracture in cylindrical specimens subjected to explosive and 
impact loading is investigated in this paper. 

I. The system of equations describing the behavior of a porous material in a two-dimen- 
sional axisymmetric formulationwithin the framework of the model of an elastic-plastic body 
has the form 

pv = 8~18z + O~jOz + s j r~  pu = 8~zlaz 

§ O~/Or + (2s~ + ~)/r, V/V = Ov/~z + OuTOr -4- u/r~ 

= - p V  + v [ s ~  + s~, + s~e,,' (~ + ~)~1~ (1.1) 
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Here and below r, z are coordinates, u, v are velocity vector components along the r, z axes, 
Or, a z are stress tensor components, p is the pressure, s r, s t, Srz, s~ = ~(s r + s z) are 
stress deviator tensor components, E is the internal energy, er, e z, erz, % are strain rate 
deviator tensor components, V = P00/P is the relative volume, P00 = P0m/a0 is the initial 
density of the porous material, P0m is the initial density of the host material under normal 
conditions, a = pm/p is the porosity, a0 is the initial porosity, p is the density, g = ~0m • 

6Kom ~ 12~0m ( i - -L )  i 9K--K0~+8-~0 ~ ) i s  t he  shea r  modulus [1 ] ,  '0m, K0m a r e ,  r e s p e c t i v e l y ,  t he  shea r  modulus 

and t h e  m u l t i l a t e r a l  volume compress ion ,  r0m i s  t he  q r ~ e i s e n  c o e f f i c i e n t ,  Som i s  a m a t e r i a l  
c o n s t a n t ,  Ydm, Y0m a r e  t he  dynamic and s t a t i c  y i e l d  p o i n t s ,  ~ = (~ - 1 ) / a  i s  t h e  r e l a t i v e  
pore  volume, D/Dt i s  t h e  symbol o f  t he  Jab_mann d e r i v a t i v e ;  a l l  q u a n t i t i e s  w i t h o u t  t he  sub- 
s c r i p t  m r e f e r  to  t he  porous  m a t e r i a l .  

The pa r a me t e r  ~ in  ( 1 . 2 )  i s  de t e rmined  by us ing  t he  Mises f low c o n d i t i o n  f o r  a porous  
m a t e r i a l  in  t he  form 

s~ + s~ + s~ + s~s~ = -~ 

The s p e c i f i c  e x p r e s s i o n  f o r  ~ i s  no t  p r e s e n t e d  s i n c e  in  t he  numer i ca l  method proposed  f o r  t he  
s o l u t i o n  o f  t he  problem [2 ] ,  a p r o c e d u r e  i s  used t h a t  r educes  t he  s t r e s s  to  a f low c i r c l e ,  
which i s  e q u i v a l e n t  t o  t he  comple te  r e l a t i o n s h i p s  ( 1 . 2 ) .  

The k i n e t i c  e q u a t i o n  d e s c r i b i n g  t h e  compress ion  o f  a porous  m a t e r i a l  can be o b t a i n e d  
from the  s o l u t i o n  o f  t he  e q u i l i b r i u m  problem f o r  a s p h e r i c a l  pore  s u b j e c t e d  to  an a p p l i e d  
pressure [3] 
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Pore growth in a plastically deformed material can be computed by means of the equation 
[4] 

" [3"A ~ ] ~'~ ~ In (~-~W_ i) < 0 ~ (15) ~ = ( ~ - - i )  ~-~o I Pl for Ap=p+ = . 

w h e r e  a o o  i s  t h e  r e s i d u a l  p o r o s i t y  i n  a c o n t i n u o u s  m a t e r i a l  ( a o o  = 1 . 0 0 0 6 ) ,  a n d  a,, ~o, n a r e  
material constants whose numerical values are presented in [4]. 

Investigation of the behavior of a porous material subjected to brief pulse loads re- 
duces to solving the system of equations (1.1)-(1.5) under the appropriate initial and bound- 
ary conditions. The initial conditions correspond to the fact that the specimen material is 
in the undeformed state up to the action of the load. The boundary conditions on the free 
surfaces of the specimen under investigation are that the normal and tangential stress vector 
components equal zero as does the normal component of the velocity vector at sites of its 
fastening to a ring support. 

Spall fracture in specimens is considered as a process of pore growth in a plastically 
deformed material. When the critical porosity (a relative pore volume of 0.3) is reached 
in an element of material, disturbance of the continuity of the material occurs and the 
stresses therein are taken equal to zero. 

2. As experimental data [5] show, spall fracture is formed in a target during the im- 
pact of a steel disc (0.5 cm thickness, 7.6 cm diameter) on a steel target (i cm thickness 
and 9 cm diameter) at velocities above 215 m/sec. Presented in Fig. i at the time 6 ~sec 
is the fracture pattern in the target for a 320 m/sec impact velocity, where isolines of the 
relative pore volume are displayed by lines by which the degree of target fracture can be 
judged; the domain of ruptured material is blackened. The limit porosity is reached in one 
series of cells at the center of the target perpendicular to the impact direction. A main- 
line crack is formed in this domain of the material. 

Spall fracture in the target can be averted if a porous spacer is used. Let us consider 
the process of steel impactor interaction with a two-layer target consisting of a steel sheet 
and a sheet of porous iron with the relative pore volume 0.25 (a 0 = 1.34). It is seen from 
computations that the shock wave in the target is reflected into the steel sheet in the form 
of an unloading wave upon reaching the interfacial surface of the materials, whereupon the 
compressive stress level therein is reduced from 4-1.5 GPa. The intensity of the shock being 
propagated over the porous sheet is inadequate to total compression of the:material. Inter- 
ference of the unloading waves being propagated from the impactor free surface and the ma- 
terial interfacial surface results in the appearance of a domain of tensile stresses at the 
center of the steel sheet, however their level is insufficient for fracture formation. Pore 
growth occurs in the target in only a small domain at the contact surface with the impactor. 
All these features are traced well in Fig. 2 where the mass velocity field and the isolines 
of the relative pore volume in the impactor and the target are presented at the time 5 psec. 

The fracture pattern in the target containing the porous spacer depends strongly on the 
impact velocity, the magnitude and location of the porous spacer, and the relative volume of 
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the pores therein, as computations performed within the framework of one-dimensional deforma- 

tion showed [6]. 

3. We examine the influence of porous spacers on the spall fracture in metal discs sub- 
jected to explosive loading by cylindrical superposed HE charges. In order to simplify the 
solution of the problem, the action of the detonating charge on the metal disc is replaced by 
the action of a pressure pulse 

where  T , =  2I,/(~p.r~) i s  t h e  t i m e  o f  d e t o n a t i o n  p r o d u c t  a c t i o n  on t h e  d i s c ,  Is=0.8(h/%)l/~oo~r~D~ 
i s  t h e  t o t a l  i m p u l s e  t r a n s m i t t e d  t o  t h e  d i s c  by t h e  d e t o n a t i o n  p r o d u c t s  [ 7 ] ,  D H i s  t h e  de -  
t o n a t i o n  wave v e l o c i t y ,  h ,  d = 2r  0 a r e  t h e  HE c h a r g e  h e i g h t  and d i a m e t e r ,  and P0H i s  t h e  
c h a r g e  d e n s i t y .  

A s h o c k  whose  i n t e n s i t y  depends  on t h e  HE c h a r g e  c h a r a c t e r i s t i c s  o c c u r s  d u r i n g  d e t o n a t i o n  
p r o d u c t  i n t e r a c t i o n  w i t h  a m e t a l  d i s c .  As r e g a r d s  t h e  d e t o n a t i o n  p r o d u c t s ,  a r e f l e c t e d  s h o c k  
i s  p r o p a g a t e d  o v e r  i t  whose i n i t i a l  i n t e n s i t y  i s  d e t e r m i n e d  by t h e  d e p e n d e n c e  [8] 

u=~-~j 1 - - 2  + t ) k §  

Here  k = 4 p / ( p 0 ~ D ~ ) ,  m i s  t h e  p o l y t r o p i c  i n d e x ,  and u i s  t h e  mass  v e l o c i t y .  

The s o l u t i o n  o f  t h i s  e q u a t i o n  in  c o n j u n c t i o n  w i t h  t h e  s h o c k  a d i a b a t i c  e q u a t i o n  f o r  t h e  
d i s c  m a t e r i a l  c o m p l e t e l y  d e t e r m i n e s  t h e  s o l u t i o n  o f  t h e  p r o b l e m  o f  f i n d i n g  t h e  i n i t i a l  p r e s -  
s u r e  P0 on t h e  s e p a r a t i o n  b o u n d a r y .  The me thod  o f  c o n s t r u c t i n g  t h e  p o r o u s  m a t e r i a l  a d i a b a t  
i s  p r e s e n t e d  in  [ 6 ] .  

F i g u r e  3 shows a s o l u t i o n ,  by a g r a p h i c a l  me thod ,  f o r  t h e  p r o b l e m  o f  f i n d i n g  t h e  i n i t i a l  
p r e s s u r e  P0 on t h e  s u r f a c e  o f  m o n o l i t h i c  and p o r o u s  s t e e l  o b s t a c l e s  d u r i n g  t h e  e x p l o s i o n  o f  
a cylindrical HE charge (a 0 = 1.34, P0H = 1.65 g/cm s, D H = 7655 m/sec, m = 3) lines i and 2 
are shock adiabats of the continuous and porous iron, 3 is the secondary expression adiabat 
of the detonation products. 

The fracture pattern in a steel disc (12.7 cm diameter, 5.08 cm height) subjected to the 
action of an impulsive load simulating a contact explosion of a cylindrical HE charge (d = 
h = 5.08 cm, P0H = 1.65 g/cm 3, D H = 7655 m/sec) is presented at the time 20 ~sec in Fig. 4. 
The geometric dimensions of the steel disc and the applied HE charge are taken the same as 
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in [9]. The shaded zones are the material domains in which the relative pore volume is 
greater than 0.15. Two fracture zones were formed in the disc. The main fracture domain is 
parallel to the rear surface of the disc. The second fracture zone is under a crater. It 
appeared because of interference of the unloading waves being propagated from the contact 
surface and the free facial surface of the disc. Both fracture zones are observed in experi- 
ment [9]. 

Shown in Fig. 5 are the fracture and isolines of the relative pore volume in a two-layer 
disc at the time 20 ~sec. The first sheet of the disc is steel, while the second is porous 
iron with a relative pore volume of 0.25. 

Interaction of opposing unloading waves being propagated from the free facial surface 
of the steel sheet and from the interracial surface of the materials resulted in the forma- 
tion of a fracture domain at the center of the steel sheet. The shock being propagated over 
the porous material first compresses it. Its intensity drops during propagation so that the 
porous material remains practically uncompressed behind the shock front in the last times. 
Having reached the free rear surface of the porous layer it is reflected in the form of un- 
loading waves whose interference with the unloading waves being propagated from the free sur- 
face of the steel sheet results in an increase in the relative pore volume at the disc rear 
surface. 

Figure 6 illustrates the fracture and isolines of the relative pore volume in a two- 
layer disc at the time 21 ~sec, where the first sheet is porous iron while the second is 
steel. The shock intensity in the porous layer is sufficient for compression of the central 
part of the porous material layer to a continuous material. Material domains adjoining the free 
side surface of the porous layer and the crater edge remained uncompressed. Fracture did not 
occur in this modification of the computation. Only a small domain of material in which in- 
significant growth of the porosity occurred as a result of interference of the opposing un- 
loading waves being propagated from the free facial and rear surfaces of the disc, was formed 
at the center of the disc. 

Therefore, it follows from the above that porous spacers protect specimens under explo- 
sive loading well if they are on their facial surface. 
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EQUATIONS OF ISOTROPIC DEFORMATION OF GAS-SATURATED MATERIALS WITH 

ALLOWANCE FOR LARGE STRAINS OF SPHERICAL PORES 

V. A. Buryachenko and A. M. Lipanov UDC 539.4 

We will examine a composite medium consisting of a homogeneous isotropic matrix and 
spherical pores saturated with gas. The character of location of the pores is assumed to 
be statistically uniform. The effective-field method was used in [1-3] to obtain equations 
of state of gas-saturated porous media with the assumption of small strains of the pores and 
the medium as a whole [i]. In the case of large general strains, it is natural to examine 
methods of solution involving the use of successive approximations [4], such as was done in 
in an examination of composite media by the method of conditional functions [5]. The 
latter method is based on the assumption that the stress field is uniform within each compo- 
nent of the composite - an assumption which leads to large errors in evaluating the effective 
parameters of linearly elastic media compared to the effective-field method [i, 2]. The 
authors of [6, 7] analyzed arbitrarily large strains for the special case of isotropic defor- 
mation of a material with spherical pores and an incompressible matrix, using a cellular model 
to perform the analysis. Here, we solve a similar problem with allowance for the effect of 
gas pressure in the pores, and we make use of the ideas behind the effective-field method 
[I, 2] in doing so. The usefulness of this method has been proven in studies of linear prob- 
lems for micro-inhomogeneous media. 

i. Physical Model. In a number of cases of practical importance, it is of interest 
to study the volumetric deformation of rubber-like materials with a low (~1%) porosity. For 
the sake of determinateness, we will describe the strain properties of the matrix with a 
Mooney potential [4]. The authors of [i] showed that in linear problems of gas-saturated 
porous media, the effects of binary interaction of inclusions are unimportant for spherical 
pores in an incompressible matrix in the case of low porosity. Here, the effective bulk 
modulus is determined by the solution of the linearly elastic problem of a single inclusion 
in a matrix with a certain effective stress field specified at infinity. Thus, it is accept- 
able to make use of the cellular model in [6, 7]. This model presumes equivalent strain prop- 
erties for a porous medium and a thick-walled spherical shell and equality of the ratio of 
the volumes of the pore and spherical element to the porosity of the composite medium being 
modeled. Here, we will use the positive ideas behind the effective-field method and we will 
place the spherical element in a matrix with a prescribed effective stress field at infinity 
which differs from the acting stress field. We find the parameters of this field by the 
self-consistent effective-field method [i, 3]. The method makes it unnecessary to postulate 
the relationship between the relative dimensions of the spherical element and the porosity of 
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